Lesson 17. The Simplex Method

0 Review

- Given an LP with *n* decision variables, a solution **x** is **basic** if:
 - (a) it satisfies all equality constraints
 - (b) at least n linearly independent constraints are active at \mathbf{x}
- A basic feasible solution (BFS) is a basic solution that satisfies all constraints of the LP
- Canonical form LP:

maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

- *m* equality constraints and *n* decision variables (e.g. *A* has *m* rows and *n* columns).
- Standard assumptions: $m \le n$, rank(A) = m
- If x is a basic solution of a canonical form LP, there exist m basic variables of x such that
 - (a) the columns of *A* corresponding to these *m* variables are linearly independent
 - (b) the other n m nonbasic variables are equal to 0
- The set of basic variables is the **basis** of **x**

1 Overview

- General improving search algorithm
 - 1: Find an initial feasible solution \mathbf{x}^0
 - 2: Set t = 0
 - 3: **while** \mathbf{x}^t is not locally optimal **do**
 - 4: Determine a simultaneously improving and feasible direction \mathbf{d} at \mathbf{x}^t
 - 5: Determine step size λ
 - 6: Compute new feasible solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda \mathbf{d}$
 - 7: Set t = t + 1
 - 8: end while
- The **simplex method** is a specialized version of improving search
 - o For canonical form LPs
 - o Start at a BFS in Step 1
 - Consider directions that point towards other BFSes in Step 4
 - Take the maximum possible step size in Step 5

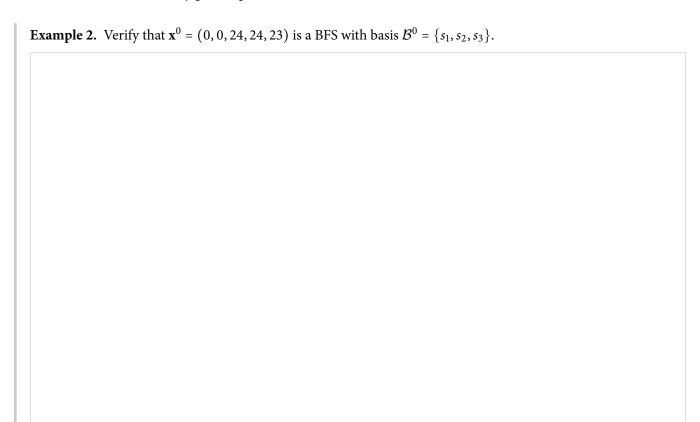
Example 1. Throughout this lesson, we will use the canonical form LP below:

maximize
$$13x + 5y$$

subject to $4x + y + s_1 = 24$
 $x + 3y + s_2 = 24$
 $3x + 2y + s_3 = 23$
 $x, y, s_1, s_2, s_3 \ge 0$

2 Initial solutions

• For now, we will start by guessing an initial BFS



3 Finding feasible directions

- Two BFSes are **adjacent** if their bases differ by exactly 1 variable
- Suppose \mathbf{x}^t is the current BFS with basis \mathcal{B}^t
- Approach: consider directions that point towards BFSes adjacent to \mathbf{x}^t
- To get a BFS adjacent to **x**^t:
 - \circ Put one nonbasic variable into \mathcal{B}^t
 - Take one basic variable out of \mathcal{B}^t
- Suppose we want to put nonbasic variable y into \mathcal{B}^t
- This corresponds to the **simplex direction d** y corresponding to nonbasic variable y

• \mathbf{d}^{y} has a component for every decision variable

• e.g.
$$\mathbf{d}^{y} = (d_{x}^{y}, d_{y}^{y}, d_{s_{1}}^{y}, d_{s_{2}}^{y}, d_{s_{3}}^{y})$$
 for the LP in Example 1

- The components of the simplex direction \mathbf{d}^y corresponding to nonbasic variable y are:
 - $\circ d_v^y = 1$
 - o $d_z^y = 0$ for all other nonbasic variables z
 - d_w^y (uniquely) determined by $A\mathbf{d} = \mathbf{0}$ for all basic variables w
- Why does this work? Remember for LPs, \mathbf{d} is a feasible direction at \mathbf{x} if
 - \circ $\mathbf{a}^{\mathsf{T}}\mathbf{d} \leq 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} \leq b$
 - \circ $\mathbf{a}^{\mathsf{T}}\mathbf{d} \geq 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} \geq b$
 - $\mathbf{a}^{\mathsf{T}}\mathbf{d} = 0$ for each active constraint of the form $\mathbf{a}^{\mathsf{T}}\mathbf{x} = b$
- Each nonbasic variable has a corresponding simplex direction

Example 3. The basis of the BFS $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ is $\mathcal{B}^0 = \{s_1, s_2, s_3\}$. For each nonbasic variable, x and y, we have a corresponding simplex direction. Compute the simplex directions \mathbf{d}^x and \mathbf{d}^y .

4 Finding improving directions

- Once we've computed the simplex direction for each nonbasic variable, which one do we choose?
- We choose a simplex direction **d** that is improving
- Recall that if $f(\mathbf{x})$ is the objective function, **d** is an improving direction at **x** if

$$\nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{d} \begin{cases} > 0 & \text{when maximizing } f \\ < 0 & \text{when minimizing } f \end{cases}$$

- For LPs, $f(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x}$, and so $\nabla f(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x}$ for any \mathbf{x}
- The **reduced cost** associated with nonbasic variable *y* is

$$\bar{c}_y = \mathbf{c}^\top \mathbf{d}^y$$

where \mathbf{d}^{y} is the simplex direction associated with y

• The simplex direction \mathbf{d}^y associated with nonbasic variable y is improving if

$$\bar{c}_y$$
 $\begin{cases} > 0 & \text{for a maximization LP} \\ < 0 & \text{for a minimization LP} \end{cases}$

Example 4. Consider the BFS $\mathbf{x}^0 = (0, 0, 24, 24, 23)$ with basis $\mathcal{B}^0 = \{s_1, s_2, s_3\}$. Compute the reduced costs \bar{c}_x and \bar{c}_y for nonbasic variables x and y, respectively. Are \mathbf{d}^x and \mathbf{d}^y improving?

- If there is an improving simplex direction, we choose it
- If there is more than 1 improving simplex direction, we can choose any one of them
 - One option **Dantzig's rule**: choose the improving simplex direction with the most improving reduced cost (maximization LP most positive, minimization LP most negative)
- If there are no improving simplex directions, then the current BFS is a global optimal solution

5 Determining the maximum step size

- We've picked an improving simplex direction how far can we go in that direction?
- Suppose \mathbf{x}^t is our current BFS, \mathbf{d} is the improving simplex direction we chose
- Our next solution is $\mathbf{x}^t + \lambda \mathbf{d}$ for some value of $\lambda \ge 0$
- How big can we make λ while still remaining feasible?
- Recall that we computed \mathbf{d} so that $A\mathbf{d} = \mathbf{0}$
- $\mathbf{x}^t + \lambda \mathbf{d}$ satisfies the equality constraints $A\mathbf{x} = \mathbf{b}$ no matter how large λ gets, since

$$A(\mathbf{x}^t + \lambda \mathbf{d}) = A\mathbf{x}^t + \lambda A\mathbf{d} = A\mathbf{x}^t = \mathbf{b}$$

- So, the only thing that can go wrong are the nonnegativity constraints
 - \Rightarrow What is the largest λ such that $\mathbf{x}^t + \lambda \mathbf{d} \ge \mathbf{0}$?

Example 5. Suppose we choose the improving simplex direction $\mathbf{d}^x = (1, 0, -4, -1, -3)$. Compute the maximum step size λ for which $\mathbf{x}^0 + \lambda \mathbf{d}^x$ remains feasible. • Note that only negative components of **d** determine maximum step size: $x_i + \lambda d_i \stackrel{?}{\geq} 0$ • The **minimum ratio test**: starting at the BFS \mathbf{x} , if any component of the improving simplex direction \mathbf{d} is negative, then the maximum step size is $\lambda_{\max} = \min \left\{ \frac{x_j}{-d_j} : d_j < 0 \right\}$ **Example 6.** Verify that the minimum ratio test yields the same maximum step size you found in Example 5. • What if **d** has no negative components? • For example: • Suppose $\mathbf{x}^0 = (0, 0, 1, 2, 3)$ is a BFS • $\mathbf{d} = (1, 0, 2, 4, 3)$ is an improving simplex direction at \mathbf{x} • Then the next solution is $\mathbf{x}^0 + \lambda \mathbf{d} = (\lambda, 0, 1 + 2\lambda, 2 + 4\lambda, 3 + 3\lambda)$ for some value of $\lambda \ge 0$ $\mathbf{x}^0 + \lambda \mathbf{d} \ge 0$ for all $\lambda \ge 0$!

- We can improve our objective function and remain feasible forever!
- ⇒ The LP is unbounded
- Test for unbounded LPs: if all components of an improving simplex direction are nonnegative, then the LP is unbounded

6 Updating the basis

- We have our improving simplex direction **d** and step size λ_{max}
- We can compute our new solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda_{\text{max}} \mathbf{d}$
- We also update the basis: update the set of basic variables
- Entering and leaving variables
 - The nonbasic variable corresponding to the chosen simplex direction enters the basis and becomes basic: this is the **entering variable**
 - Any <u>one</u> of the basic variables that define the maximum step size leaves the basis and becomes nonbasic: this is the **leaving variable**

Example 7. Compute \mathbf{x}^1 . What is the basis \mathcal{B}^1 of \mathbf{x}^1 ?							

7 Putting it all together: the simplex method

Step 0: Initialization. Identify a BFS \mathbf{x}^0 . Set solution index t = 0.

Step 1: Simplex directions. For each nonbasic variable *y*, compute the corresponding simplex direction \mathbf{d}^y and its reduced cost \bar{c}_y .

Step 2: Check for optimality. If no simplex direction is improving, <u>stop</u>. The current solution \mathbf{x}^t is optimal. Otherwise, choose any improving simplex direction \mathbf{d} . Let x_e denote the entering variable.

Step 3: Step size. If $\mathbf{d} \ge \mathbf{0}$, stop. The LP is unbounded. Otherwise, choose the leaving variable x_ℓ by computing the maximum step size λ_{max} according to the minimum ratio test.

Step 4: Update solution and basis. Compute the new solution $\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda_{\max} \mathbf{d}$. Replace x_ℓ with x_e in the basis. Set t = t + 1. Go to Step 1.

Problem 1. Consider the following LP

maximize
$$4x_1 + 3x_2 + 5x_3$$

subject to $2x_1 - x_2 + 4x_3 \le 18$
 $4x_1 + 2x_2 + 5x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$ (1)

The canonical form of this LP is

maximize
$$4x_1 + 3x_2 + 5x_3$$

subject to $2x_1 - x_2 + 4x_3 + s_1 = 18$
 $4x_1 + 2x_2 + 5x_3 + s_2 = 10$
 $x_1, x_2, x_3, s_1, s_2 \ge 0$ (2)

- a. Use the simplex method to solve the canonical form LP (2). In particular:
 - Use the initial BFS $\mathbf{x}^0 = (0, 0, 0, 18, 10)$ with basis $\mathcal{B}^0 = \{s_1, s_2\}$.
 - Choose your entering variable using **Dantzig's rule** that is, choose the improving simplex direction with the most positive reduced cost. (If this was a minimization LP, you would choose the improving simplex direction with the most negative reduced cost.)
- b. What is the optimal value of the canonical form LP (2)? Give an optimal solution.
- c. What is the optimal value of the original LP (1)? Give an optimal solution.